## PROBABILITY THEORY - FINAL EXAM SOLUTIONS

1. $\mathrm{F}, \mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{T}$.
2. (a) There are two possibilities:

- one value appears 3 times, two values appear once ("three of a kind"):

$$
\mathbb{P}(\text { Case } 1)=\frac{1}{6^{5}} \cdot \underbrace{\binom{6}{3}}_{\begin{array}{c}
\text { choosing } \\
3 \text { numbers }
\end{array}} \cdot \underbrace{3}_{\begin{array}{c}
\text { theose number appears } 3 x \\
\text { that }
\end{array}} \cdot \underbrace{\frac{5!}{3!}}_{\begin{array}{c}
\text { number of } \\
\text { permutations } \\
\text { of word abccc }
\end{array}}=\frac{1200}{6^{5}} ;
$$

- one value appears once, two values appear twice ("two pairs"):

$$
\mathbb{P}(\text { Case } 2)=\frac{1}{6^{5}} \cdot \underbrace{\binom{6}{3}}_{\begin{array}{c}
\text { choosing } \\
3 \text { numbers }
\end{array}} \cdot \underbrace{3}_{\begin{array}{c}
\text { theosing number appears } 1 \mathrm{x} \\
\text { that a }
\end{array}} \cdot \underbrace{\frac{5!}{2!2!}}_{\begin{array}{c}
\text { number of } \\
\text { permutations }
\end{array}}=\frac{1800}{6^{5}} .
$$

So the total probability is $\frac{1200+1800}{6^{5}}=\frac{3000}{7776} \approx 38.58 \%$.
(b) The total number of arrangements is $n$ !. The number of arrangements in which Alice is next to Bob and Charles is next to David is

$$
\underbrace{(n-2)!}_{\begin{array}{c}
\text { treat } \mathrm{A}+\mathrm{B}, \\
\text { C+D as single } \\
\text { individuals }
\end{array}} \cdot \underbrace{2}_{\text {order of A+B }} \cdot \underbrace{2}_{\text {order of } \mathrm{C}+\mathrm{D}}=4(n-2)!
$$

The final answer is thus $\frac{4(n-2)!}{n!}=\frac{4}{n(n-1)}$.

- We represent a placement of balls into urns as a permutation of the symbols:

```
००००००००००|
```

(o represents a ball and $\mid$ represents a delimiter between two urns). The number of such permutations is $\frac{12!}{2!10!}=66$.
3. (a)

$$
\begin{gathered}
F_{Y}(y)=\mathbb{P}(X \leq \ln y)=F_{X}(\ln y)=\left\{\begin{array}{ll}
\ln (y) & \text { if } \ln (y) \in(0,1) ; \\
0 & \text { if } \ln (y) \leq 0 ; \\
1 & \text { if } \ln (y) \geq 1
\end{array}= \begin{cases}\ln (y) & \text { if } y \in(1, e) ; \\
0 & \text { if } y \leq 1 \\
1 & \text { if } y \geq e\end{cases} \right. \\
\Longrightarrow f_{Y}(y)= \begin{cases}y^{-1} & \text { if } y \in(1, e) ; \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

(b)

$$
\mathbb{P}(X \geq x)=\sum_{i=x}^{\infty} f_{X}(i) \leq \sum_{i=x}^{\infty} \frac{i}{x I} \cdot f_{X}(i)=\frac{1}{x} \sum_{i=x}^{\infty} i \cdot f_{X}(i) \leq \frac{1}{x} \sum_{i=0}^{\infty} i \cdot f_{X}(i)=\frac{1}{x} \mathbb{E}(X)
$$

(c) $M_{U}(t)=e^{\lambda_{1}\left(e^{t}-1\right)}$ and $M_{V}(t)=e^{\lambda_{2}\left(e^{t}-1\right)}$. Since they are independent,

$$
M_{U+V}(t)=M_{U}(t) \cdot M_{V}(t)=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)} .
$$

This is the moment generating function of the Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$.
4. (a) For $i=1, \ldots, 50$, let $X_{i}$ be the indicator function of the event that man $i$ recovers his own hat. Then,

$$
X=\text { number of men who recover their own hats }=\sum_{i=1}^{50} X_{i} .
$$

Each $X_{i} \sim \operatorname{Bernoulli}(p)$ with

$$
p=\mathbb{P}\left(X_{i}=1\right)=\frac{1}{50},
$$

so

$$
\mathbb{E}\left(X_{i}\right)=\frac{1}{50}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{1}{50} \cdot \frac{49}{50}=\frac{49}{50^{2}} .
$$

For $i \neq j$,

$$
\mathbb{E}\left(X_{i} X_{j}\right)=\mathbb{P}\left(X_{i}=X_{j}=1\right)=\frac{48!}{50!}=\frac{1}{50 \cdot 49},
$$

so

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(X_{i} X_{j}\right)-\mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j}\right)=\frac{1}{50 \cdot 49}-\frac{1}{50^{2}}=\frac{1}{50^{2} \cdot 49} .
$$

We then have

$$
\mathbb{E}(X)=\sum_{i=1}^{50} \mathbb{E}\left(X_{i}\right)=50 \cdot \frac{1}{50}=1
$$

and
$\operatorname{Var}(X)=\sum_{i=1}^{50} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq 50} \operatorname{Cov}\left(X_{i}, X_{j}\right)=50 \cdot \frac{49}{50^{2}}+2 \cdot\binom{50}{2} \cdot \frac{1}{50^{2} \cdot 49}=1$.
(b) $X$ is a sum of 50 Bernoulli random variables. They are not independent, but they are close to being independent: they have covariance close to zero (and recall that, for Bernoulli random variables, covariance equal to zero implies independence). Hence, the distribution of $X$ is close to $\operatorname{Binomial}(50,1 / 50)$. This is approximately equal to a Poisson distribution with parameter $\lambda=50 \cdot \frac{1}{50}=1$.
(c) $\mu_{X}=1, \sigma_{X}=1$, and by the Central Limit Theorem,

$$
\sqrt{100} \cdot \frac{\bar{X}_{100}-\mu_{X}}{\sigma_{X}} \approx \mathcal{N}(0,1) .
$$

Hence, letting $Z \sim \mathcal{N}(0,1)$,

$$
\begin{aligned}
\mathbb{P}\left(\bar{X}_{100}>1.08\right)=\mathbb{P}\left(10\left(\bar{X}_{100}-1\right)>0.8\right) & \approx \mathbb{P}(Z>0.8) \\
& =1-\mathbb{P}(Z \leq 0.8) \approx 1-0.7881=0.2119 .
\end{aligned}
$$

5. (a)

$$
C \int_{0}^{1} \int_{0}^{2}(x+2 y) \mathrm{d} x \mathrm{~d} y=C \int_{0}^{1}(2+4 y) \mathrm{d} y=4 C \Longrightarrow C=\frac{1}{4}
$$

(b)

$$
f_{X}(x)=\int_{0}^{1} \frac{1}{4}(x+2 y) \mathrm{d} y=\frac{1}{4}(x+1), 0<x<2
$$

(c) Let $(z, w)=g(x, y)=(x, x+2 y)$, so that $h(z, w)=g^{-1}(z, w)=(z,(w-z) / 2)$. We have $f_{Z, W}(z, w)>0$ if and only if $f_{X, Y}(h(z, w))>0$, that is, if $0<z<2$ and $z<w<z+2$. Also,

$$
\left|\operatorname{det}\left(\begin{array}{ll}
\partial h_{1} / \partial z & \partial h_{1} / \partial w \\
\partial h_{2} / \partial z & \partial h_{2} / \partial w
\end{array}\right)\right|=\left|\left(\begin{array}{cc}
1 & 0 \\
-1 / 2 & 1 / 2
\end{array}\right)\right|=\frac{1}{2}
$$

and so

$$
f_{X, W}(x, w)=f_{Z, W}(x, w)=f_{X, Y}(h(x, w)) \cdot \frac{1}{2}=\frac{1}{8}\left(x+2 \cdot \frac{w-x}{2}\right)=\frac{w}{8}
$$

with $0<x<2$ and $x<w<x+2$.
6. (a)

$$
\begin{aligned}
\operatorname{Var}(X Y)=\mathbb{E}\left(X^{2} Y^{2}\right)-\mathbb{E}(X Y)^{2} & =\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)-\mathbb{E}(X)^{2} \mathbb{E}(Y)^{2} \\
& =\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)-\mu_{X}^{2} \mu_{Y}^{2} \\
& =\sigma_{X}^{2} \sigma_{Y}^{2}+\mu_{Y}^{2} \sigma_{X}^{2}+\mu_{X}^{2} \sigma_{Y}^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}-\bar{X}_{n}, \bar{X}_{n}\right) & =\operatorname{Cov}\left(X_{i}, \bar{X}_{n}\right)-\operatorname{Cov}\left(\bar{X}_{n}, \bar{X}_{n}\right)=\operatorname{Cov}\left(X_{i}, \frac{1}{n} \sum_{j=1}^{n} X_{j}\right)-\operatorname{Var}\left(\bar{X}_{n}\right) \\
& =\frac{1}{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)-\frac{\sigma^{2}}{n}=\frac{1}{n} \operatorname{Var}\left(X_{i}\right)-\frac{\sigma^{2}}{n}=0
\end{aligned}
$$

where we have used the fact that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$, due to independence.
7. (a)

$$
\mathbb{E}\left(g\left(U_{i}\right)\right)=\int_{-\infty}^{\infty} g(x) \cdot f_{U_{i}}(x) \mathrm{d} x=\int_{0}^{1} g(x) \mathrm{d} x
$$

The random variables $X_{1}=g\left(U_{1}\right), X_{2}=g\left(U_{2}\right), \ldots$ are independent and identically distributed with mean $\int_{0}^{1} g(x) \mathrm{d} x$. By the law of large numbers, $\frac{1}{n} \sum_{i=1}^{x} X_{i}$ converges in probability, as $n \rightarrow \infty$, to its mean $\int_{0}^{1} g(x) \mathrm{d} x$.
(b) For $i=1, \ldots, 1000$, let $I_{i}$ be the indicator function of the event that rock $i$ is inside the circle. These are independent Bernoulli random variables with

$$
\mathbb{P}\left(I_{i}=1\right)=\iint_{\text {circle }} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Noting that

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{4} & \text { if }(x, y) \in \text { square } \\ 0 & \text { otherwise }\end{cases}
$$

we get

$$
\mathbb{P}\left(I_{i}=1\right)=\frac{\text { Area }(\text { circle })}{4}=\frac{\pi}{4}=\mu_{I_{i}} .
$$

By the law of large numbers, $\frac{1}{1000} \sum_{i=1}^{1000} I_{i}$ is close to $\mu_{I_{i}}=\frac{\pi}{4}$. Hence, we get an estimate for $\pi$ by computing

$$
4 \cdot \frac{1}{1000} \sum_{i=1}^{1000} I_{i}=\frac{\#\{\text { rocks inside the circle }\}}{250}
$$

8. $\log (Y)=W_{1}+\cdots+W_{n}$, where

$$
W_{i}=\log X_{i}= \begin{cases}\log (1)=0 & \text { with probability } 1 / 10 \\ \log (10)=1 & \text { with probability } \frac{9}{10}\end{cases}
$$

(here, 'log' indicates the logarithm on base 10). The $W_{i}$ 's are then independent Bernoulli random variables with

$$
\mu_{W_{i}}=\frac{9}{10}, \quad \sigma_{W_{i}}^{2}=\frac{9}{10}-\left(\frac{9}{10}\right)^{2}=\frac{9}{100}
$$

Hence, the distribution of $\log (Y)$ is $\operatorname{Binomial}(400,9 / 10)$, which can be approximated by $\mathcal{N}(360,36)$. Letting $Z^{\prime} \sim \mathcal{N}(360,36)$ and $Z \sim \mathcal{N}(0,1)$, we have

$$
\begin{aligned}
\mathbb{P}\left(10^{354} \leq Y \leq 10^{363}\right) & =\mathbb{P}(354 \leq \log (Y) \leq 363) \\
& \approx \mathbb{P}\left(353.5 \leq Z^{\prime} \leq 363.5\right) \\
& =\mathbb{P}\left(\frac{353.5-360}{6} \leq Z \leq \frac{363.5-360}{6}\right) \\
& =\mathbb{P}(-1.08 \leq Z \leq 0.58) \\
& =F_{Z}(0.58)-1+F_{Z}(1.08) \approx 0.7190-1+0.8599=0.5789
\end{aligned}
$$

